

Highlights of DDW

FUNCTIONAL AND MOTILITY DISEASES
ASHA GUPTA COGDILL, M.D.
UNIVERSITY OF CALIFORNIA, DAVIS

Disclosures

► I have no financial disclosures

Absent Esophageal Contractile
Reserve is an Independent
Predictor of Reflux Burden in
Patients with Ineffective
Esophageal Motility Characterized
by High Proportion of Failed
Swallows (#790)

E. Cricco-Lizza, J. X. Cai, et. al

- 413 patients of which 161 (39%) had ≥ 50% ineffective swallows
 - ▶ 84 (20.3%) with low (< 50%) failed swallows
 - ▶ 54 (13.1%) with < 70% ineffective swallows
 - ▶ 30 $(7.3\%) \ge 70\%$ ineffective swallows (new CC 4.0v)
 - 77 (18.6%) with high (≥ 50%) failed swallows
 - ▶ 36 (8.7%) with contractile reserve
 - ▶ 41 (9.9%) with no contractile reserve

MRS response:

Intact response = Mean MRS distal contractile integral (DCI) > 1

Mean single swallow DCI

- Reflux burden measured by performing 24-hour Impedence pH testing
- Significantly higher mean and % abnormal acid exposure time (AET) in patients with high failed swallows and absent MRS
- ► Also significantly higher mean proximal AET in these patients

- Significantly higher mean and % abnormal total reflux episodes in patients with high failed swallows and absent MRS
- Also increased mean proximal total reflux episodes in these patients

Multivariate analysis adjusting for age, sex, BMI, smoking history, and alcohol use

	Abnormal AET		Abnormal total reflux		
	OR (95% CI)	<i>p</i> -value	OR (95% CI)	<i>p</i> -value	
High failed swallow -MRS	2.56 (1.06-6.13)	0.02	4.83 (1.89-12.4)	0.009	
High failed swallow +MRS	0.93 (0.26-3.35)	0.92	1.17 (0.23-5.77)	0.55	
Low failed swallow ≥70% Ineffective	0.32 (0.04-2.48)	0.18	1.57 (0.40-6.23)	0.87	
Low failed swallow <70% Ineffective	1.22 (0.43-3.47)	0.64	1.73 (0.56-5.37)	0.98	

Conclusion: IEM with ≥ 50% failed swallows and absent contractile reserve is associated with higher reflux burden as compared to normal motilty, IEM with <50% failed swallows and IEM with ≥ 50% failed swallows but intact contractile reserve</p>

Functional Dyspepsia and Gastroparesis are Interchangeable Syndromes with Common Clinical and Pathological Features (#462)

P. J. Pasricha, M. Grover, K.P. Yates, et.

- 944 patients in GpCRC gastroparesis registry followed prospectively for 48 weeks
 - 224 normal emptying at baseline and met Rome III for FD
 - ▶ 95% post-prandial distress syndrome
 - ▶ 68% epigastric pain syndrome
 - 720 with gastroparesis at baseline by standard 4-hour scintigraphy
 - Similar demographics between the two groups except for slightly higher prevalence of diabetes in the gastroparesis group
 - No significant difference in terms of baseline symptom severity or predominant symptom (nausea, vomiting, abdominal pain, etc.)

In 189 patients with delayed gastric emptying at baseline, when re-tested, 42% now had normal gastric emptying.

In 60 patients with normal gastric emptying at baseline, when retested, 37% now had delayed gastric emptying.

No significant change in medications or hemoglobin A1c for either group that had a change in their gastric emptying status.

	, D at bassinis (1, - 00)			op at bassimis (i.e. i.e.)		
Changes in HbA1c and medication use during 48 wk of follow-up	FD at 48 wk (N = 38)	Gp at 48 wk (N = 22)	P	Gp at 48 wk (N = 110)	FD at 48 wk (N = 79)	P
HbA1c (%)°	0.12 (0.83)	0.60 (1.55)	.40	0.29 (1.25)	0.18 (1.71)	.77
Medication use during 48 wk (%)						
Narcotics use	13.9% (54.3)	22.7% (42.9)	.80	15.7% (43.6)	11.0% (35.6)	.37
Proton pump inhibitors	-2.8% (50.6)	-9.1% (52.6)	.74	2.8% (48.3)	-8.2% (46.4)	.12
Prokinetics	-2.8% (56.0)	0% (43.6)	26	6.5% (49.8)	5.5% (0.50)	.43
Antiemetics	2.8% (37.7)	9.1% (29.4)	.62	11.1% (43.9)	5.5% (46.8)	.20
Antidepressants	-22.2% (54.0)	-9.1% (52.6)	27	-10.2% (51.0)	0% (60.1)	.18
Anxiolytics	11.1% (57.5)	13.6% (35.1)	.95	14.8% (47.0)	15.1% (43.0)	.48
Pain modulators	5.6% (53.2)	9.1% (61.0)	.95	9.3% (39.9)	6.8% (25.4)	.40
Cannabinoids	0% (33.8)	4.5% (21.3)	.46	2.8% (25.4)	9.6% (29.6)	.22
Treatment use during 48 wk (%)						
On TPN	-2.8% (16.7)	-4.5% (21.3)	.33	0.9% (21.6)	-5.5% (28.3)	.54
Gastric electric stimulation device implantation	8.3% (43.9)	4.5% (37.5	.34	13.0% (41.2)	9.6% (37.9)	.72

FD at baseline (N = 60)

Gp at baseline (N = 189)

- At 48 weeks, symptom profiles between the two groups were similar with no statistical difference.
- Histopathologic analysis in small subset of patients with full thickness biopsies showed loss of Interstitial cells of Cajal and decreased CD206+ macrophage levels for both FD and GP
- Conclusion: 41% patients had a change in their gastric emptying status after 48 weeks
 - BUT this did not significantly change the symptom profile for patients in either group.

Demographic and Clinical
Factors Associated with Severe
Abdominal Bloating in FGIDs:
Younger age, Constipation, and
Dyspepsia, but not Psychological
Factors, are Associated with
Severe Bloating (#101)

C.P Gardiner, P. Singh, S. Ballou, et al.

- 612 patients with functional gastrointestinal disorder as made by Rome IV criteria were surveyed (78.3% female)
 - ▶ 231 minimal bloating, 217 moderate bloating, 164 severe bloating
- Increased bloating severity (based on the Patient Assessment of Gastrointestinal Symptom Severity) was associated with:
 - Younger age
 - Presence of functional dyspepsia
 - ▶ Presence of functional constipation
 - Abdominal pain severity
 - Somatization Severity (measured by PHQ-12)
- Not associated with: anxiety, depression, and sleep disturbance

Multivariable Analysis

		dds Ratio 95% CI	P-value	
Age	-0.99	[-0.98,-0.99]	0.041	
Sex	1.22	[0.81,1.84]	0.336	
FGID Subtype				
Functional dyspepsia [§]	2.24	[1.58,3.18]	<0.001	
IBS	0.65	[0.43,0.98]	0.039	
Functional constipation	1.8	[1.06,3.07]	0.031	
PHQ-12 score	1.08	[1.02,1.14]	0.005	

Multivariable Analysis

	Odds Ratio 95% CI		P-value	
Severity of gastrointestinal symptoms (PROMIS T-score)				
Abdominal pain	1.08	[1.06,1.10]	<0.001	
Constipation	1.04	[1.02,1.06]	<0.001	
Diarrhea	0.99	[0.97,1.01]	0.308	
Anxiety	1.00	[0.97,1.02]	0.885	
Depression	1.00	[0.98,1.03]	0.858	
Sleep disturbance	0.99	[0.97,1.01]	0.397	

FODMAPs, but not Gluten, Elicit Modest Symptoms of IBS: Double-Blind, Placebo-Controlled Randomised 3-way Crossover Trial (#380)

P. Hellström, E. Nordin, C. Brunius, et. al

- ▶ 110 patients included, 7 dropout (96 F, 14 M)
- ▶ IBS subtype: Constipation 32, Diarrhea 38, Mixed 40
- All patients placed on a low-impact diet with low FODMAPs and low gluten at baseline

- Treatment with FODMAPs were statistically different from gluten and placebo in terms of IBS-SSS and abdominal distension
 - Gluten was not different from placebo in either of these
- No difference in frequency/severity of abdominal pain, satisfaction with bowel habits or quality of life
- No difference in the subtypes of IBS

Efficacy of a New Approach to the Reintroduction Phase of the Low-FODMAP diet in IBS (#381)

K. Van Den Houte, E. Colomier, et. al

46 patients, results for 26 patients to date (87% Female, base IBS-SSS 310 +/-75)

 Significant improvement in IBS-SSS (defined as >50) in all but 2 patients during the strict diet phase

+: P<0.05 versus baseline

Statically significant increase of IBS-SSS when introducing Mannitol and Fructans.

+: P<0.05 versus baseline

* : P<0.05 versus strict diet

The DOMINO study: Diet or medication in primary care patients with irritable bowel syndrome (#512)

F. Carbone, K. Van den Houte, et. al

- 470 patients recruited and randomized to a simple low FODMAP diet (smartphone app) or Spasmomen 40mg TID (otilonium bromide)
 - Treated for at least 8 weeks and then followed for 16 weeks after

IBS symptom severity – responder rate

Follow-up

- Significant improvement in quality of life, anxiety, depression in both groups.
- Female gender was a predictor for response to diet.
- Somatization was a predictor of response to medication.

Efficacy and safety of sporeforming probiotics in functional dyspepsia: a randomised placebo-controlled trial (#464)

L. Wauters, M. Ceulemans, et. al

- Spore-forming probiotics: Bacilli class (Bacillus and Lactobacillus)
 - Gastric-acid resistant endospores which are thought to decrease inflammation and permeability in the small intestines.
 - ▶ Response measured using Leuven Postprandial Distress Scale (≥0.7 change)
- 68 patients enrolled with 55 completing (25 probiotic, 30 placebo)

Clinical response ($\triangle PDS \ge 0.7$)

Positive breath test results

- Decreased inflammation as evidenced by decreased IL17A and Th17 cells at 16 weeks in the probiotic group
- Decreased gut-homing Th17 and Th2 cells for patients with FD on PPI therapy
- Correlation of decreased PDS score with decreased IL17A and Th17 cells

- Increased Faecalibacterium and Roseburia found with probiotics
- PDS score decreased if there was an increase in average
 Faecalibacterium

How often does "Squatty Potty" correct an abnormal balloon expulsion test in chronically constipated patients? (#98)

E. Koo, G. Ezell, W.D. Chey, et al.

Multivariable regression model evaluating for predictors of BET correction with DPMD

Predictor	Odds Ratio (95% CI)	p-value
Age	1.00 (0.98-1.02)	0.72
Male Gender	2.34 (1.08-5.11)	0.03*
DD Diagnosis	0.47 (0.23-0.98)	0.04*
Opiate Hx	0.36 (0.08-1.60)	0.18

Age > or < 60, DD: Dyssynergic defecation

Nationwide Analysis of Ambulatory Care for Constipation in the United States From 2005 to 2015 using the National Ambulatory Medical Care Survey (NAMCS) (#100)

N Nadpara, F. K. Friedenberg

- 34.8 million physician visits in the US for constipation from 2005-2015
- Mean age 58.4 +/- 19.5y, gender 68.2% female
- Race: 82% white, 11.6% black, 6.4% other
- Most patients were on no therapy for their constipation
- Osmotic laxatives were preferred (mean 25.5% per year)
 - 6.9% fiber bulk laxative, 5.4% stimulant laxative, 5.7% stool softener,
 5.1% pro-secretory agent
- Significant increase in the use of pro-secretory agents (Linaclotide, lubiprostone): 1% (2005-2007) → 5% (2008-2011) → 9% (2012-2015)
 - More likely to be prescribed by a GI provider vs PCP (53.6% vs 33.3%, p< 0.0001)

Trends in Constipation visits by Provider Type

Questions?