

Edward W. Holt, MD

California Pacific Medical Center

Department of Transplantation Division of Hepatology

- Obesity and...
 - Colon
 - Colorectal neoplasia (2 abstracts)
 - Inflammatory Bowel Disease (1 abstract)
 - Liver
 - Alcoholic hepatitis (1 abstract)
 - Hepatitis C (1 abstract)
 - NAFLD (2 abstracts)

- Obesity and...
 - Colon
 - Colorectal neoplasia
 - Inflammatory Bowel Disease
 - Liver
 - Alcoholic hepatitis
 - Hepatitis C
 - NAFLD

Obesity and Colorectal Neoplasia

- Each 5 kg/m² increase in BMI above 25 is associated with an increase in the RR for CRC of 1.24 for men and 1.09 for women.¹
- Well-accepted association between insulin, IGF, IGF-IR and cancer risk²
- Current guidelines do not make specific recommendations about CRC screening based on obesity or diabetes.

Renehan AG, Lancet 2008

^{2.} Gallagher, Endocrinology 2011

Gastrointestinal Malignancy

Obesity, Waist-Hip-Ratio, Diet and Physical Activity and Risk of Serrated Polyps and Sessile Serrated Adenomas: A Cross-Sectional Study

- Pooled data from prior cross-sectional colonoscopy studies at UNC, 1998-2010
- Expert pathologist review to determine SSA
- Validated FFQ to determine dietary intake
- MV analysis adjusted for age, sex, study, date

Obesity, Waist-Hip-Ratio, Diet and Physical Activity and Risk of Serrated Polyps and Sessile Serrated Adenomas: A Cross-Sectional Study

- 2,308 patients undergoing colonoscopy
 - 57% with no polyps
 - 20% with conventional adenomas
 - 13.5% with serrated polyps
 - 1.7% with sessile serrated adenomas
- Only trends toward risk of all polyps with decreased physical activity, fiber intake; increased fat intake

Obesity, Waist-Hip-Ratio, Diet and Physical Activity and Risk of Serrated Polyps and Sessile Serrated Adenomas: A Cross-Sectional Study

Variable	Conventional adenomas only n=460 OR (95% CI)	Serrated polyps only n=311 OR (95% CI)	SSA only n=39 OR (95% CI)	
Body mass index (kg/m ²)		-	-	
25-29.9	1.15 (0.88, 1.50)	1.21 (0.89, 1.63)	0.65 (0.29, 1.48)	
≥30	1.66 (1.25, 2.19)	1.36 (0.99, 1.88)	1.11 (0.50, 2.45)	
High waist-hip-ratio #	1.47 (1.12, 1.92)	1.21 (0.89, 1.64)	1.61 (0.74, 3.49)	

- Obesity was associated with conventional adenomas but not serrated polyps or SSA's.
- Emphasizes epidemiologic, biologic differences between conventional adenomas and SSA's.

Tubular adenoma vs. sessile serrated polyp pathways

Associations of Anthropometric Factors with KRAS and BRAF Mutation Status of Primary Colorectal Cancer in Men and Women: A Cohort Study

		KRAS wild-type		KRAS	S mutated	BRAF wild-type		BRAF mutated	
Anthropometric Factor	tertile	n=148	HR	n=85	HR	n=208	HR	n=26	HR
Waist Hip Ratio (cm/cm)		44	1.00	23	1.00	59	1.00	8	1.00
		51	1.15 (0.77-1.72)	24	1.06 (0.60-1.89)	64	1.08 (0.76-1.54)	11	1.44 (0.78-3.59)
		53	1.45 (0.97-2.17)	38	2.13 (1.26-3.61)	85	1.76 (1.25-2.46)	7	1.20 (0.43-3.34)
	p trend		0.073		0.004		0.001		0.697
Body Mass Index (kg/m²)		46	1.00	19	1.00	55	1.00	10	1.00
		43	0.81 (0.53-1.23)	24	1.18 (0.64-2.16)	60	0.96 (0.67-1.39)	7	0.66 (0.25-1.74)
		59	1.21 (0.82-1.80)	42	2.44 (1.41-4.23)	93	1.67 (1.19-2.35)	9	0.97 (0.39-2.44)
	p trend		0.287		0.001		0.001		0.939

Association Between Nonalcoholic Fatty Liver Disease and Colorectal Adenoma: Updated Meta-Analysis

- Electronic database search for studies investigating association between NAFLD and colorectal adenoma
- 4 cross-sectional studies, 3 cohort studies: 4,095 subjects included
- 5 Asian studies, 2 European/North American studies

Association Between Nonalcoholic Fatty Liver Disease and Colorectal Adenoma: Updated Meta-Analysis

Meta Analysis

Model	Study name		Statist	ach study	-		Odds ratio and 95% Cl				
		Odds ratio	Lower limit	Upper limit	Z-Value	p-Value					
	Wong 2011	1.930	1.219	3.057	2.803	0.005		1	-	- [
	Stadlmayr, 2011	1.850	1.428	2.397	4.657	0.000				E	
	Hwang, 2010	1.640	1.359	1.979	5.163	0.000		- 1			
	Huang, 2013	2.020	1.513	2.696	4.773	0.000			-	•	
	Touzin, 2011	0.960	0.520	1.771	-0.131	0.896			+		
	Lee 2011	1.940	1.108	3.395	2.321	0.020			-	-	
	Lin 2014	0.569	0.439	0.737	-4.268	0.000		1	•		
Fixed		1.420	1.271	1.587	6.181	0.000			•		
							0.01	0.1	1	10	100
								Favours A		Favours E	3

- NAFLD was associated with adenoma, OR 1.42.
- Association was more significant in Asian studies.

Relationship of Non-Alcoholic Fatty Liver Disease to Colorectal Adenomatous Polyps

- Retrospective review of 2,917 Korean patients undergoing routine colonoscopy
- NAFLD defined by abdominal ultrasound
- Multivariate analysis adjusting for age, sex, smoking, HTN, DM, metabolic syndrome and NAFLD

Relationship of Non-Alcoholic Fatty Liver Disease to Colorectal Adenomatous Polyps

- Colorectal adenomas (CRC-A) associated with age, sex smoking, NAFLD, MS, HTN and DM in unadjusted analysis
- Multivariate analysis for association with CRC-A:

	OR	95% CI	P
Age ≥50	2.23	1.80-2.85	<0.001
Male sex	1.89	1.44-2.46	<0.001
Current smoker	1.56	1.20-2.03	0.001
NAFLD	1.28	1.03-1.60	0.029

MS, HTN, DM no longer significant

Relationship of Non-Alcoholic Fatty Liver Disease to Colorectal Adenomatous Polyps

 Risk for CRC-A by MS components and NAFLD (multivariate analysis):

	OR	95% CI	P
Waist Circumference	1.40	1.12-1.75	0.004
Hypertension	1.08	0.87-1.33	0.510
Glucose Intolerance	1.24	1.00-1.54	0.047
Elevated Triglycerides	1.28	1.04-1.59	0.022
Low HDL	1.04	0.84-1.29	0.703
NAFLD	1.34	1.10-1.63	0.004

Proposed mechanism of influence of NAFLD on carcinogenesis in colorectal cancer

NAFLD is a proxy for a higher risk of diabetes and cardiovascular disease

- NAFLD + obesity confers higher risk of developing diabetes, OR 3.23 (1.78-5.89)¹
 - Compare to obesity alone, OR 1.29 (0.62-2.71)
- Compared to NAFLD without fibrosis, NAFLD with fibrosis is associated with higher age- and sex-adjusted mortality, HR 1.69 (1.09-2.63)²
 - Largely driven by increased risk of cardiovascular mortality, HR 3.46 (1.91-6.25)

^{1.} Sung K, Diabetes Care 2012

^{2.} Kim D, Hepatology 2013

- Obesity and...
 - Colon
 - Colorectal neoplasia
 - Inflammatory Bowel Disease
 - Liver
 - Alcoholic hepatitis
 - Hepatitis C
 - NAFLD

Obesity and Inflammatory Bowel Disease

- Obesity is associated with increased risk of IBD (CD>UC), disease progression and impaired response to therapy.^{1,2}
- Secretion of adipokines may be involved in disease pathogenesis³
- Visceral fat in particular may play a role in IBD activity⁴

4. Zulian A, Gut 2012

^{1.} Versini M, Autoimmun Rev 2014

^{2.} Khalili H, Inflamm Bowel Dis 2015

Fink C, Inflamm Bowel Eis 2012

Adipose Tissue From Visceral Fat Has Much Higher Expression of IBD Susceptibility Genes Compared to Subcutaneous Fat

- ImmunoBase (database of genes associated with autoimmune disease) identifies IBD genes and associated loci.
- Publicly availabe gene expression profiles of normal tissue were compared to gene expression of IBD genes
 - 1. Compared IBD gene expression, 'nearby' genes and 'other' genes in SAT vs. other tissues
 - Compared gene expression in VAT vs. SAT (prepubertal children)

Adipose Tissue From Visceral Fat Has Much Higher Expression of IBD Susceptibility Genes Compared to Subcutaneous Fat

- Compared to 'nearby' and 'other' genes, IBD genes were overexpressed in SAT
- Compared to SAT, VAT showed a greater increase in gene expression, IBD>nearby>other
- More IBD genes were overexpressed in VAT vs. SAT (n=63)
 - genes for immune signalling, NK cell cytotoxicity,
 CAM, IgA production

Adipose Tissue From Visceral Fat Has Much Higher Expression of IBD Susceptibility Genes Compared to Subcutaneous Fat

- Summary:
- Compared to other tissues, adipose tissue overexpressed genes associated with IBD
- Compared to SAT, VAT overexpressed these IBD susceptibility genes
- VAT may play a role in IBD pathogenesis

Is obesity disproportionately prevalent in Inflammatory Bowel Disease?

- Ghigliotti G, Inflammation 2014
- 2. cdc.gov

Does visceral obesity predispose to more aggressive inflammatory bowel disease?

 High mesenteric fat index is associated with more complicated Crohn's disease¹

However, visceral adiposity ≠ creeping fat

Does visceral obesity predispose to more aggressive inflammatory bowel disease?

- CD: adipocyte proliferation & bidirectional immune modulation
- Obesity: adipocyte hypertrophy & unidirectional immune activation

Serum Levels and Mesenteric Fat Tissue Expression of Adiponectin and Leptin in Patients with Crohn's Disease

- 8 patients with endoscopically-, histologicallyand clinically-defined active CD (ACD) and 8 in remission (RCD) compared with 6 controls
- No difference in BMI among groups; VAT:SAT ratio not measured
- Serum adiponectin in ACD lower than controls but not lower than RCD

Serum Levels and Mesenteric Fat Tissue Expression of Adiponectin and Leptin in Patients with Crohn's Disease

 VAT-associated adipokine secretion may be different in IBD vs. control, regardless of disease activity, supporting a role for VAT in IBD pathogenesis.

- Obesity and...
 - Colon
 - Colorectal neoplasia
 - Inflammatory Bowel Disease
 - Liver
 - Alcoholic hepatitis
 - Hepatitis C
 - NAFLD

Impact of Obesity on Mortality in Alcoholic Hepatitis

- What is the prevalence and association with inhospital mortality in Alcoholic Hepatitis (AH)?
- 2011 Nationwide Inpatient Sample data including 33,097,667 adult admissions
- 0.3% had AH = 99,293 admissions

Impact of Obesity on Mortality in Alcoholic Hepatitis

- 5.92% of AH had obesity = 5,888 admissions
 - vs. 10.9% obesity among non-AH admissions
- AH mortality:
 - 5.5% in obese patients vs.
 - 4.1% in non-obese patients (p<0.0001)
- Obesity independently associated with mortality, adjusted OR 3.7 (2.1-6.8, p<0.0001)
 - Infection was the only other predictor of mortality.

Impact of Obesity on Alcoholic Hepatitis?

- Obesity and...
 - Colon
 - Colorectal neoplasia
 - Inflammatory Bowel Disease
 - Liver
 - Alcoholic hepatitis
 - Hepatitis C
 - NAFLD

Concurrent Obesity, Diabetes, and Nonalcoholic Fatty Liver Disease Is
Associated With an Increased Risk of Progression to Advanced Fibrosis Among
Patients With Chronic Hepatitis C Virus Infection: A Systematic Review

- Review of studies evaluating obesity, DM, NAFLD and HCV from 2001 through 2014
- HIV, HBV, HCC, OLT excluded
- 20 studies (all cohort studies) included
 - 11 from Europe
 - 6 from United States
 - 3 from Asia-Pacific
- 13 good quality; 7 fair (Newcastle-Ottawa scale)

Concurrent Obesity, Diabetes, and Nonalcoholic Fatty Liver Disease Is
Associated With an Increased Risk of Progression to Advanced Fibrosis Among
Patients With Chronic Hepatitis C Virus Infection: A Systematic Review

- Obesity increased the risk of advanced fibrosis in 7 studies, OR range 1.081-7.69
 - 4 studies failed to show this association
- Diabetes increased the risk of advanced fibrosis in 6 studies, OR range 2.251-9.24
- NAFLD increased the risk of advanced fibrosis in 12 studies, OR range 1.80-14.3

Factors Associated with Advanced Fibrosis in HCV

- 434 consecutively biopsied Caucasian (Italian) patients with genotype 1 chronic HCV
- PNPLA3 rs738409 phenotype described in all
 - I148M C→G mutation frequency 0.27
 - 9.4% GG homozygotes
 - 34.8% CG heterozygotes
- Multivariate analysis to identify factors associated with steatohepatitis and fibrosis

Factors Associated with Advanced Fibrosis in HCV

Presence of NASH by PNPLA3 genotype and BMI

Factors Associated with Advanced Fibrosis in HCV

- NASH significantly associated with
 - Older age (OR 1.03)
 - BMI ≥30 kg/m², OR 2.06
 - Higher HOMA, OR 1.18
 - PNPLA3 G allele, OR 1.54
- Advanced Fibrosis significantly associated with
 - Older age (p=0.002)
 - Higher HOMA, OR 1.18
 - NASH, OR 2.05 → PNPLA G allele not predictive

Impact of Obesity on Gastrointestinal and Liver Disease

- Obesity and...
 - Colon
 - Colorectal neoplasia
 - Inflammatory Bowel Disease

- Alcoholic hepatitis
- Hepatitis C
- NAFLD

Diabetes Increases the Risk of Hepatocellular Carcinoma in Non Alcoholic Steatohepatitis and Alcoholic Cirrhosis

- UNOS database: adults with liver transplant from 1996 to June 2013
- 6,686 with LT for NAFLD; 27,581 for ALD
- Comparisons made between diabetes, BMI, HCC, MELD

Diabetes Increases the Risk of Hepatocellular Carcinoma in Non Alcoholic Steatohepatitis and Alcoholic Cirrhosis

	NASH	ALD	p-value
Age (years)	58.3	52.9	<0.001
Male (%)	49.9	75.9	<0.001
BMI >30 kg/m ² (%)	32.6	14.3	<0.001
Diabetes (%)	52	9.8	<0.001
HCC (%)	6.2	3.7	<0.001

Diabetes Increases the Risk of Hepatocellular Carcinoma in Non Alcoholic Steatohepatitis and Alcoholic Cirrhosis

- Diabetes was independently associated with HCC in NASH patients, OR 1.52.
 - Among all patients, etiology of liver disease was not an independent risk factor for HCC.
 - Among diabetics, ALD was associated with higher risk of HCC than NASH, OR 1.56.

- HCC is uncommon but increasing in U.S. and the U.K.^{1,2}
 - HCC: 1.28% of U.S. cancers in 2005; 2.15% in 2015
- Traditionally associated with viral hepatitis
- Increasingly associated with obesity, diabetes and metabolic syndrome

- HCC referrals to regional hospital system in U.K. tracked 2000-2010
- Mortality data obtained from national public health record
- NAFLD diagnosis
 - Negative screen for other liver diseases
 - Steatosis on imaging or biopsy
 - ETOH <21/wk for men and <14/wk for women over the previous 5 years

Characteristics of patients with HCC within etiologic groups

	ALD (n=178)	NAFLD (n=136)	HCV (n=65)	HBV (=29)	Haem (n=34)	p-value
Age (years)	66.0	71.0	60.0	65.0	67.5	<0.001
Male (%)	92.7	77.9	78.5	89.7	91.2	<0.001
BMI (kg/m²)	28.8±0.4	32.0±0.6	25.2±0.7	26.1±1.0	27.8±1.1	<0.001
Diabetes (%)	36.5	80.1	32.3	27.6	41.2	<0.001
Cirrhosis (%)	100	77.2	96.9	82.8	79.4	<0.001

NAFLD and HCC in the United States

- SEER registry with Medicare claims 2004-2009
 - 7,255 with HCC and 21,765 controls identified
 - NAFLD by code and by obese diabetics with CC
- Etiology of liver disease for HCC cases:
 - HCV = 43%
 - NAFLD = 16%
 - ALD = 13%
 - HBV = 7%
- 4% annual increase in HCC (928 → 1,464)
 - 8% annual increase in HCV-HCC
 - 5% annual increase in NAFLD-HCC

NAFLD and Liver Transplantation

 NASH is now the second leading etiology of liver disease among adults awaiting liver transplantation in the US.

NAFLD and Liver Transplantation

 NASH is predicted to become the most common indication for liver transplantation between 2020 and 2025.

Prevalence of NAFLD in the United States

Magnetic Resonance Elastography Is Superior to Clinical Prediction Models for Determination of Advanced Fibrosis in Patients With Non-Alcoholic Fatty Liver Disease: A Prospective Study

- Cross-sectional analysis of 102 patients with biopsyproven NAFLD
- All patients had 2D-MRE within 1 year of biopsy

	AUROC	95% Confidence Interval	AUC Comparison of MRE vs. Clinical Prediction Models
2D-MRE	0.957	(0.918, 0.996)	N/A
Clinical Prediction Models			
AST to ALT ratio	0.825	(0.732, 0.918)	p = 0.013
APRI	0.807	(0.702, 0.911)	p = 0.006
BARD	0.816	(0.723, 0.910)	p = 0.001
FIB-4	0.861	(0.775, 0.946)	p = 0.039
NAFLD fibrosis score	0.818	(0.704, 0.932)	p = 0.013
Bonacini cirrhosis discriminant score	0.826	(0.725, 0.926)	p = 0.014
Lok index	0.838	(0.731, 0.944)	p = 0.046
NASH CRN model	0.796	(0.678, 0.915)	p = 0.009

Summary

- Obesity and metabolic syndrome particularly insulin resistance – are associated with increased risk of malignancy.
 - Association in CRC is stronger for traditional adenoma pathway
- Visceral adipose tissue is metabolically and immunologically active and may play a role in IBD pathogenesis.
- Metabolic syndrome, including NAFLD, is associated with progression of non-NAFLD liver diseases, particularly HCV.
- The consequences of NAFLD are not limited to liver disease, but there are already measurable increases in NAFLDassociated cirrhosis and HCC.