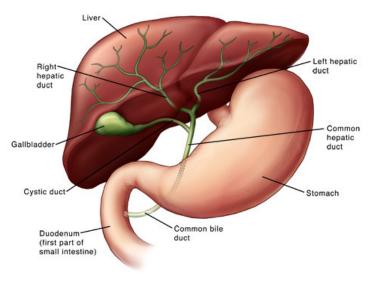
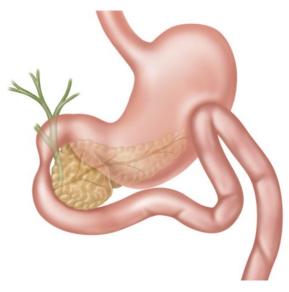
2 NCSCG 20TH ANNUAL 3 GI SYMPOSIUM

Advanced Endoscopy Updates


Chris Hamerski MD Regional Lead, Interventional Endoscopy Kaiser Permanente Northern California

Overview

- Management of Gastric Outlet Obstruction (GOO)
 - EUS-gastrojejunostomy/gastroenterostomy "EUS-GJ or EUS-GE"
- Management of cholecystitis
 - EUS-cholecystoduodenostomy
- Altered anatomy ERCP


Endoscopic Management of Gastric Outlet Obstruction (GOO)

- Definition:
 - Clinical and pathophysiologic consequence of any disease process that produces a mechanical impediment to gastric emptying
 - Benign
 - Peptic ulcer disease
 - Extrinsic compression
 - Benign tumors
 - Malignant
 - Gastric cancer
 - Duodenal cancer
 - Pancreatic cancer

Endoscopic Management of Gastric Outlet Obstruction (GOO)

- Malignant GOO
 - Surgery vs Enteral stenting

Enteral Stenting for GOO

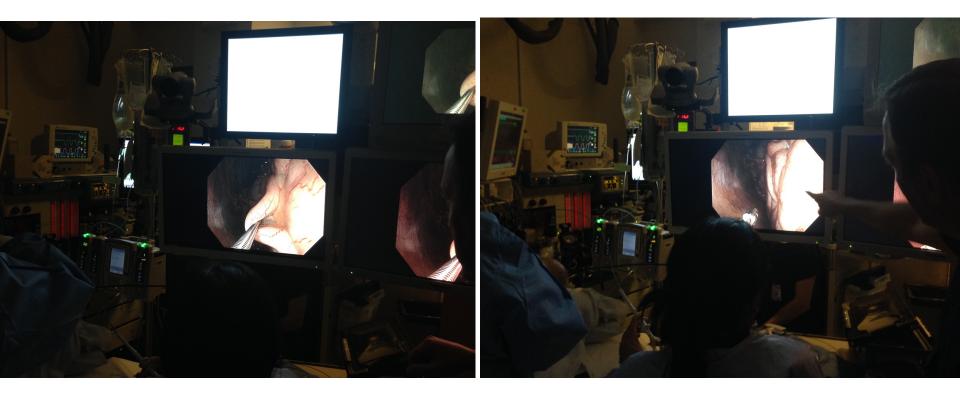
- 15-40% of enteral stent patients require reintervention
- Duodenal stent increases risk of biliary stent dysfunction (HR 2.0)
 - Mean biliary stent patency 64 days with duodenal stent vs 170 days w/o duodenal stent
- **Take home**: Enteral stenting faster than surgery at relieving obstruction with shorter hospitalization, but worse long term outcomes
- When life expectancy is
 - >6 months, surgical GJ is superior
 - <6 months, enteral stent is superior

EUS-Gastrojejunostomy

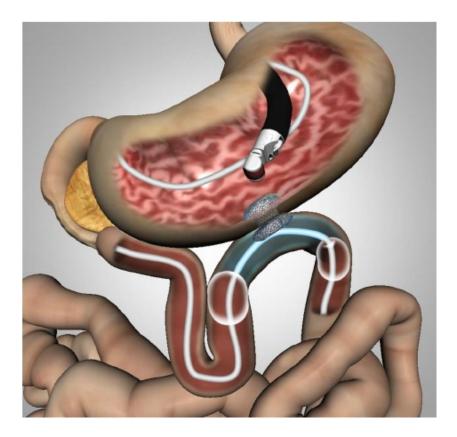
- Axios biflanged Lumen Apposing Metal Stent (LAMS)
 - EUS-guided stent deployment system with electrocautery enhanced tip

Endoscopic ultrasound-guided gastroenterostomy using novel tools designed for transluminal therapy: a porcine study

Endoscopy 2012


 Authors
 K. F. Binmoeller, J. N. Shah

 Institution
 Interventional Endoscopy Services, California Pacific Medical Center, San Francisco, California, USA


- Feasibility study in 5 pigs
- 100% technical success

First NOTES Gastrojejunostomy March 2014

EUS-Gastrojejunostomy

EUS-GJ Outcomes

- Initial data limited to case series (generally 10-30 patients)
 - 90% technical success, 90% clinical success
 - AEs: 10-15%; most managed endoscopically; 1 conversion to surgical GJ

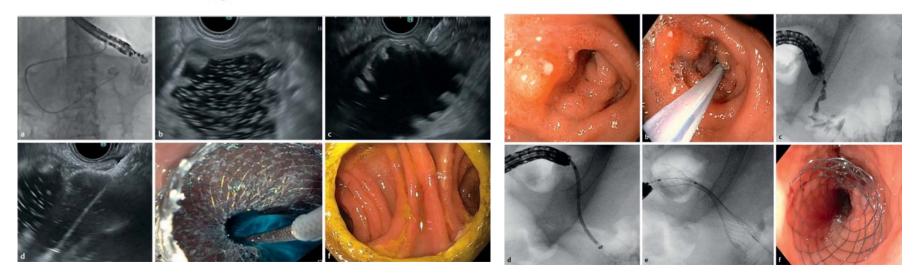
Name of author	Number of patients	O III IIOUI	Technical success %	Adverse event %
Khashab et al. (10)	10	90	90	0
ltoi (11)	20	90	90	2
Tyberg et al. (3)	26	85	92	11.5
Chen <i>et al.</i> (12)	30	83.3	86.7	10
Khashab et al. (1)	30	87	87	16

EUS-GJ Outcomes

- 2019 retrospective study of EUS-GJ (n=22) vs enteral stenting (n=78)
 - 100% technical success in both groups
 - Similar hospital stays
 - Higher stent failure requiring re-intervention in enteral stent group (32% vs 8%)
 - Higher adverse events in ES group (40% vs 21%)

Endoscopic ultrasound-guided gastroenterostomy versus open surgical gastrojejunostomy: clinical outcomes and cost effectiveness analysis

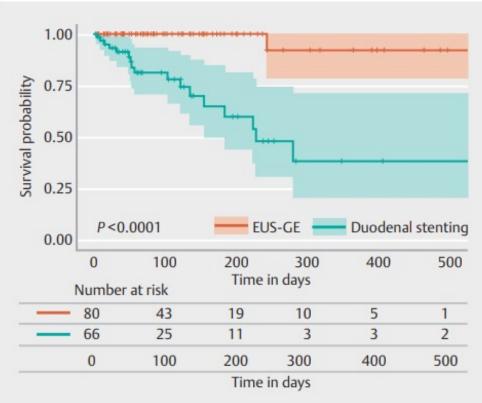
Abdul Kouanda¹ · Kenneth Binmoeller² · Christopher Hamerski² · Andrew Nett² · Jona Bernabe² · Rabindra Watson^{2,3}


- 66 patients: 40 EUS-GE, 26 Surgical GJ
 - Similar technical success: 93% vs 100%
- EUS-GE resulted in:
 - Faster resumption of oral intake (1.3 vs 4.7 days, p<0.001)
 - Shorter length of stay (5 vs 14.5 days, p<0.001)
 - Faster initiation/resumption of chemotherapy (17.7 vs 31.3 days, 0=0.033)
 - Lower cost (\$49,387 vs \$124,192)
 - No difference in symptom recurrence, re-intervention, 30 day mortality

Endoscopic ultrasound-guided gastroenterostomy versus duodenal stenting for malignant gastric outlet obstruction: an international, multicenter, propensity score-matched comparison

Endoscopy 2022

Authors


Roy L. J. van Wanrooij¹, Giuseppe Vanella², Michiel Bronswijk^{3, 4}, Peter de Gooyer⁵, Wim Laleman³, Hannah van Malenstein³, Francesco Vito Mandarino², Giuseppe Dell'Anna², Paul Fockens^{1, 5}, Paolo G. Arcidiacono², Schalk W. van der Merwe³, Rogier P. Voermans⁵

Endoscopic Stent vs EUS-GJ

- Multicenter retrospective study of ES (n=107) vs EUS-GJ (n=107) from 2015-2021
 - Clinical success: 75% (ES) vs 91% (EUS-GJ)
 - Stent dysfunction: 26% vs 1%
 - 1 stent migration in EUS-GJ group after 243 days
 - Median time to stent dysfunction in ES group: 57 days
 - Adverse events: 21% vs 10%
 - 3% in EUS-GJ group required emergency salvage surgery

▶ Fig. 3 Kaplan-Meier curve with time to event (stent dysfunction) analysis (log-rank test P<0.001). EUS-GE, endoscopic ultrasound-guided gastroenterostomy.

Endoscopic ultrasound-guided gastroenterostomy for the management of gastric outlet obstruction: A large comparative study with long-term follow-up Endosc Int Open 2023

Authors

Endosc Int Open 2023

Veeravich Jaruvongvanich¹, Tala Mahmoud¹, Barham K. Abu Dayyeh¹, Vinay Chandrasekhara¹, Ryan Law¹, Andrew C. Storm¹, Michael J. Levy¹, Eric J. Vargas¹, Neil B. Marya², Donna M. Abboud¹, Rabih Ghazi¹, Reem Matar¹, Babusai Rapaka¹, Navtej Buttar¹, Mark J. Truty³, Maridi Aerts⁴, Nouredin Messaoudi⁵, Rastislav Kunda⁶

• Retrospective multicenter study of 436 patients (232 EUS-GE, 131 ES, 73 Surgical GE)

	EUS-GE (n=232)	ES (n=131)	Surgical-GE (n=73)	Overall P value	P value EUS- GE vs. ES†	<i>P</i> value EUS-GE vs. surgical-GE ¹
Technical success (N, %)	228 (98.3)	130 (99.2)	73 (100.0)	0.58	0.66	0.58
Clinical success (N, %)	228 (98.3)	120 (91.6)	66 (90.4)	0.002*	0.002*	0.005*
Length of hospital stay (days, median [IQR])	2 (1–3)	3 (1–10)	5 (2–9)	<0.0001*	<0.0001*	0.18
Rate of re-intervention (N, %)	2 (0.9)	16 (12.2)	10 (13.7)	< 0.0001*	< 0.0001*	< 0.0001*
AEs, N (%)	20 (8.6)	51 (38.9)	20 (27.4)	<0.0001*	<0.0001*	<0.0001*

EUS-Gastrojejunostomy

"EUS-GJ has similar technical success and adverse event rates to duodenal stenting, but higher clinical success and lower recurrence rates, suggesting that EUS-GJ should be preferred over duodenal stenting in centers with available expertise"

• EUS-GJ for benign GOO

- 16 patients
 - Intrinsic: NSAID stricture, PUD, XRT stricture, anastomotic stricture
 - Extrinsic: Pancreatitis, SMA syndrome, hematoma
- 93% clinical success, 100% oral intake same day
- 25% had stent removed, 75% stent remained in place
 - Median stent patency 286 days (88-1444 days)
 - No stent migration
- Take home: EUS-GJ excellent option for benign GOO
 - LAMS may be left in place longer than previously thought

• RCT of EUS-GE (n=48) to Duodenal Stent (n=49)

Results			
	EUS-GE (N = 48)	DS (N = 49)	P-value
Technical success (%)	46 (95.8)	49 (100)	0.242
Clinical success (%)	48 (100)	45 (91.8)	0.117
Procedural time (min) *	35.0 (25 - 48.5)	19.5 (14 – 28.5)	< 0.001
Time to resumption of oral diet (days)	1 (1 – 2)	1 (1 – 2)	0.236
Hospital stay (days) *	4 (3 – 7)	6 (3.25 – 11.75)	0.013
30-day mortality (%)	10 (20.8)	6 (12.2)	0.286
30-day AE (%)	11 (22.9)	12 (24.5)	1
6 month reintervention (%)	2 (4.2)	14 (28.6)	0.002
Stent patency (days)	174.2 (95% Cl 165.6 – 182.9)	147.9 (95% CI 130.1 – 165.7)	0.013
1-month GOOS	2.41 (0.7)	1.91 (0.9)	0.008
Mean survival (days)	118.5 (95% Cl 98.4 – 138.6)	114.3 (95% CI 97/2 – 131.4)	0.910

Teoh et al. DRA-GOO trial. DDW oral presentation 2023

Same-session Double EUS bypass vs Surgical GJ and Hepaticojejunostomy

EUS-guided gastroenterostomy was performed first[1] using the WEST approach[2,3] or EPASS.

Several approaches for **biliary drainage** were allowed:

- EUS-antegrade stenting [right]
- EUS-guided hepaticogastrostomy
- EUS-guided transgastric rendez-vous
- EUS choledocho-duodenostomy [left]

Bronswijk M, Vanella G, Van der Merwe S. VideoGIE. 2021.
 Bronswijk M, et al. VideoGIE. 2020 Aug 3;5(9):442.
 S. Van der Merwe, et al. Therapeutic EUS ESGE Guideline Endoscopy 2021.

Bronswijk et al. DDW oral presentation 2023

• Same-session Double EUS bypass vs Surgical GJ and Hepaticojejunostomy

				-	
	EUS (n=53)		Surgery (n=101)		P value
Efficacy					
Technical success, n (%)	51	96.2%	101	100.0%	0.117
Clinical success*, n (%)	48/53	90.6%	83	82.2%	0.234
Per protocol clinical success, n (%)	48/51	94.1%	83	82.2%	0.049
Median time to oral intake, days (IQR)	0	(0-1)	6	(3-7)	<0.001
Full diet tolerability, n (%)	50/53	94.3%	22/27	81.5%	0.112
Median time to full diet, days (IQR)	3	(2-4)	9	(6-14)	
Gastroenterostomy dysfunction, n (%)	0	0.0%	4	4.0%	0.299
Median time to dysfunction, days (IQR)	N/A	N/A	130	(57-336)	
Biliary dysfunction, n (%)	4	7.5%	5	5.0%	0.495
Median time to dysfunction, days (IQR)	64	(43-67)	149	(39-265)	
Distal obstruction, n (%)	1	1.9%	2	2.0%	1.000
Median time to distal obstruction, days (IQR)	90	N/A	466	(246-686)	
Baseline bilirubin, median, mg/dl	3,8	(2.8-8.9)	2,2	0.7-6.2	0.064
Bilirubin decrease >25%	51	96.2%	98	97.0%	1.000
Bilirubin decrease >50%	49	92.5%	94	93.1%	1.000
Bilirubin decrease >75%	29	54.7%	31	30.7%	0.005

• Same-session Double EUS bypass vs Surgical GJ and Hepaticojejunostomy

		EUS (n=53)		Surgery (n=101)		P value
Safety						
Overall adverse ever	nts, n (%)	6	11.3%	35	34.7%	0.002
Mild, n(%)		2	3.8%	4	4.0%	1.000
	Pain, n (%)	1	1.9%	0	0.0%	0.344
	Post-procedural cholangitis, n (%)	1	1.9%	1	1.0%	1.000
Moderate, n(%)		2	3.8%	15	14.9%	0.055
	Sepsis, n (%)	0	0.0%	4	4.0%	0.299
	Post-interventional bleeding, n (%)	2	3.8%	3	3.0%	1.000
	Post-operative collection, n (%)	0	0.0%	6	5.9%	0.094
	Need for re-endoscopy, n (%)	1	1.9%	1	1.0%	1.000
Severe, n(%)		2	3.8%	20	19.8%	0.007
	Hepatic pseudoaneurysm, n (%)	1	1.9%	0	0.0%	0.344
	Prolonged anorexia, n (%)	0	0.0%	2	2.0%	0.546
	Anastomotic bleeding, n (%)	0	0.0%	5	5.0%	0.165
	Post-interventional infection, n (%)	0	0.0%	10	9.9%	0.016
	Surgical (re-)intervention, n (%)	1	1.9%	2	2.0%	1.000

Secondary outcomes					
Median procedure duration, min (IQR)	51	(32-77)	198	(139-263)	<0.001
Median hospital stay, days (IQR)	4	(3-9)	13	(9-22)	<0.001
Median weight change after 2 months, kg (IQR)	-0.6	(-2.4-3.5)	-1.9	(-2.0-0.1)	0.039
Median post-procedural survival, days (IQR)	179	(98-409)	158	(35-353)	0.101

Compared to surgery, same-procedure **Double EUS-bypass** showed:

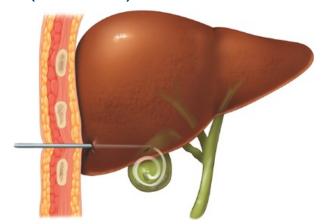
- Similar technical and clinical success
- Fewer overall and severe adverse events
- Significantly shorter time to oral intake and hospital stay

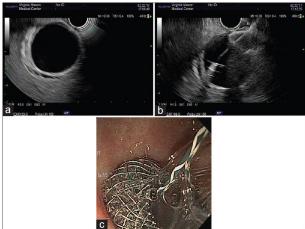
Despite treating patients with:

- more comorbid conditions,
- different (perceived) anaesthesiological risk
- potentially more advanced disease

- Gastric emptying in EUS-GE (n=14) vs Enteral Stent (n=12) for malignant GOO
 - Median gastric emptying t1/2:
 - EUS-GE 86 mins vs ES 133 min (p=0.036)
 - Abnormal emptying:
 - EUS-GE: 8.3% vs ES 57%

EUS-GJ


• Growing evidence supports EUS-GJ as the preferred treatment of malignant GOO, and likely benign GOO


Overview

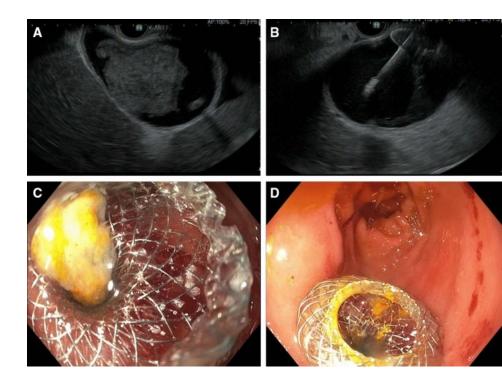
- Management of Gastric Outlet Obstruction (GOO)
 - EUS-gastrojejunostomy/gastroenterostomy "EUS-GJ or EUS-GE"
- Management of cholecystitis
 - EUS-cholecystoduodenostomy
- Altered anatomy ERCP

Management of Acute Cholecystitis

- Typically managed surgically
- High risk patients have been managed with percutaneous cholecystotomy tube
- Retrospective studies have suggested EUS-guided gallbladder drainage (EUS-GBD) may be superior to percutaneous GB drainage (PT-GBD)

EUS-GBD vs PT-GBD

- Prospective multicenter RCT, 5 high volume centers
- Inclusion
 - >18 yo with acute cholecystitis
 - Deemed high risk for cholecystectomy or refused surgery
- Exclusion
 - Suspected gangrene or perforated GB
 - Previous GB drainage
 - Liver abscess
 - Altered anatomy of upper GI tract
 - Decompensated cirrhosis, portal HTN, varices
 - Coagulopathy
 - Pregnancy

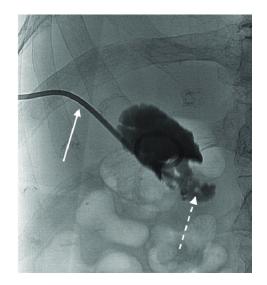

Endosonography-guided gallbladder drainage versus percutaneous cholecystostomy in very high-risk surgical patients with acute cholecystitis: an international randomised multicentre controlled superiority trial (DRAC 1)

Anthony Y B Teoh ^(o), ¹ Masayuki Kitano ^(o), ² Takao Itoi, ³ Manuel Pérez-Miranda, ⁴ Takeshi Ogura, ⁵ Shannon Melissa Chan, ¹ Carlos Serna-Higuera, ⁴ Shunsuke Omoto, ⁶ Raul Torres-Yuste, ⁴ Takayoshi Tsuichiya, ³ Ka Tak Wong, ⁷ Chi-Ho Leung ^(o), ¹ Philip Wai Yan Chiu ^(o), ¹ Enders Kwok Wai Ng, ¹ James Yun Wong Lau¹

Gut 2020

Methods

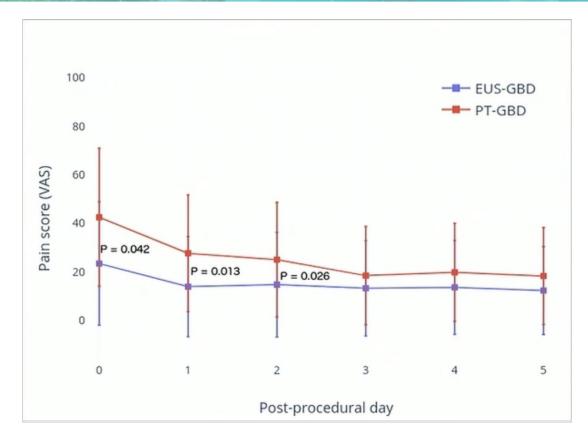
- EUS-GBD
 - EUS puncture from stomach or duodenum (duodenum preferred)
 - Could use conventional method (19G needle -> guidewire -> LAMS or direct method with cautery enhanced system
 - 10 x 10 mm stent if stones <10 mm, otherwise 15 x 10 mm
 - GB stones removed when able
- PT-GBD
 - Experienced interventional radiologist
 - 8.5F pigtail drainage catheter, transhepatic preferred


Follow Up

• EUS-GBD

- 1 month F/U cholecystoscopy
 - If stones cleared -> remove LAMS -> place 7F double pigtail stent

• PT-GBD


- 1 month F/U cholecytogram
 - If patent cystic duct -> drain removed
 - If obstructed cystic duct -> long term PT-GBD

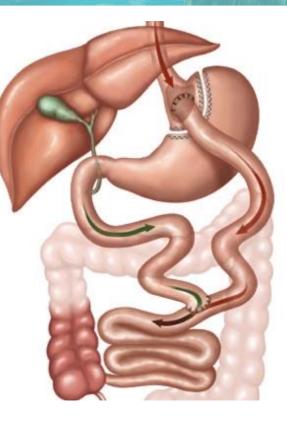
Clinical Outcomes

	EUS-GBD N = 39	PT-GBD N = 40	P-value
1-year adverse events (%) Grading 1/2/3/4/5	10 (25.6)	31 (77.5)	< 0.001
Recurrent acute cholecystitis (%)	1 (2.6)	8 (20)	0.029
Reinterventions after 30-days (%) Reinsertion of PT-GBD Clearing blocked stent	1 (2.6) 0 1	12 (30) 12 0	0.001
Unplanned admissions (%)	6 (15.4)	20 (50)	0.002
30-day adverse events (%) Grading 1/2/3/4/5	5 (12.8) 0/1/2/0/2	19 (47.5) 6/4/5/0/4	0.001
30-day mortality (%)	3 (7.7)	4 (10)	1
Technical success (%)	38 (97.4)	40 (100)	0.494
Clinical success (%)	36 (92.3)	37 (92.5)	1
Procedure time (minutes)	22.7 (13.0)	27.4 (12.0)	0.108
Hospital stay (days) *	8 (4 – 13)	9 (7 – 14)	0.181

Post Procedural Pain Score

- EUS-GBD reduced 30-day and 1-year adverse events, postprocedure pain, recurrent acute cholecystitis, re-interventions and unplanned admissions
- EUS-GBD should be the procedure of choice in high risk surgical patients, provided expertise is available

Technical considerations


- Cholecystectomy after EUS-GBD?
- Any degree of GB perforation/leak -> IR cholecystostomy
- EUS-GBD can be performed after IR perc cholecystostomy
 - Earlier is better!
 - Long term decompression makes GB distention more difficult

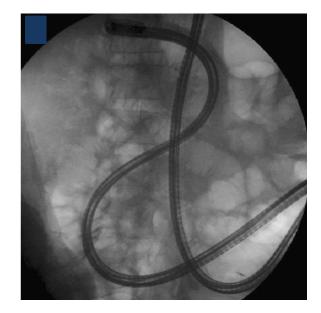
Overview

- Management of Gastric Outlet Obstruction (GOO)
 - EUS-gastrojejunostomy/gastroenterostomy "EUS-GJ or EUS-GE"
- Management of cholecystitis
 - EUS-cholecystoduodenostomy
- Altered anatomy ERCP

Altered Anatomy ERCP

- Roux en Y gastric bypass
 - Roux limb: 100-150 cm
 - Biliopancreatic limb: 50-100 cm

Altered Anatomy ERCP


- Laparoscopic-Assisted ERCP
 - Timing issues
 - Sterility
 - Surgical complications/difficulties
 - Adhesions, co-morbidities
 - Requires large trocar (>15 mm)
 - 10% risk of lap-associated Aes
 - Difficult positioning

Abbas et al. GIE 2018 Wang et al World J Surg Proc 2014

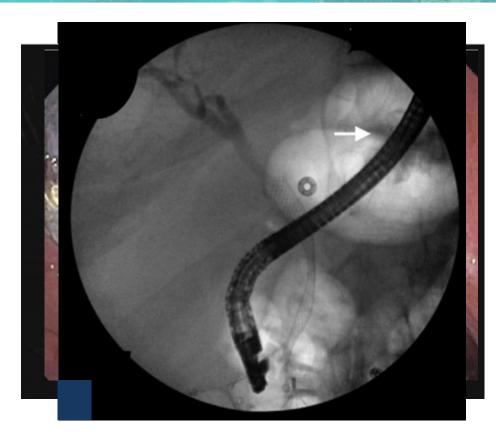
Altered Anatomy ERCP

- Deep enteroscopy
 - Time
 - Access (80-93% success accessing papilla)
 - Limited accessories
 - Cannulation rates 68-95%

EUS to the Rescue!

- "EAC": EUS-guided anterograde cholangiography / EUS-guided ERCP
- Technique:
 - 19G transgastric-transhepatic puncture of left intrahepatic duct
 - Cholangiogram
 - Anterograde guidewire passage
 - Dilation of needle tract
 - Anterograde intervention
 - Balloon sphincteroplasty
 - Anterograde stone extraction
 - Anterograde stent placement
 - Long limb rendezvous if necessary

Anterograde EUS Outcomes


	Patients (n=37)
Technical Success (Hepatico- gastric/enteric fistula)	91.9%
Adverse Events (bile peritonitis)	8.1%
Clinical Success	91.9%
Procedure Time (range) One Stage Two Stage	27.4 (22-35) 47.8 (14-84)

- Expert hands only
- Limited interventions, small simple stones only

Mukai et al GIE 2019

EUS-Directed transGastric ERCP (EDGE)

- EUS-guided 19G needle puncture of excluded stomach
 - Transgastric or transjejujunal
- Water +/- contrast injected
- 15 mm or 20 mm LAMS placed
 - Secured in place?
- ERCP performed immediately or in 2-3 weeks
- LAMS removed
 - Fistula closure?

Laparoscopic vs Enteroscopy

Systematic review of 22 case series

- Cannulation rates
 - LA-ERCP: 96%
 - SBE-ERCP: 62%
 - DBE-ERCP: 82%
- Complications:
 - LA-ERCP: 18%
 - SBE-ERCP: 10%
 - DBE-ERCP: 2%

Comparison between Enteroscopy-Based and Laparoscopy-Assisted ERCP for Accessing the Biliary Tree in Patients with Roux-en-Y Gastric Bypass: Systematic Review and Meta-analysis

Alberto Machado da Ponte-Neto^{1,2} • Wanderley M. Bernardo³ · Lara M. de A. Coutinho¹ · latagan Rocha Josino¹ Vitor Ottoboni Brunaldi¹ · Diogo T. H. Moura¹ · Paulo Sakai¹ · Rogério Kuga¹ · Eduardo G. H. de Moura¹

LA-ERCP has higher success rate, but higher adverse events

Machado da Ponte-Neto et al. Obesity Surgery 2018

EUS-directed Transgastric ERCP (EDGE) Versus Laparoscopy-assisted ERCP (LA-ERCP) for Roux-en-Y Gastric Bypass (RYGB) Anatomy

A Multicenter Early Comparative Experience of Clinical Outcomes

	EGDE (n=29)	LA-ERCP (n=43)
Technical Success	96.5%	100%
ERCP success	96.5%	97.7%
Adverse Events	24%	19%
Procedure time, min	73	184
Length of stay, days	0.8	2.7

Kedia et al. J Clin Gastro 2019

An international, multicenter, comparative trial of EUS-guided gastrogastrostomy-assisted ERCP versus enteroscopy-assisted ERCP in patients with Roux-en-Y gastric bypass anatomy

Majidah Bukhari, MD,^{1,6} Thomas Kowalski, MD,² Jose Nieto, MD,³ Rastislav Kunda, MD,⁴ Nitin K. Ahuja, MD,¹ Shayan Irani, MD,⁵ Apeksha Shah,² David Loren, MD,² Olaya Brewer, MD,¹ Omid Sanaei, MD,¹ Yen-I Chen, MD,¹ Saowanee Ngamruengphong, MD,¹ Vivek Kumbhari, MD,¹ Vikesh Singh, MD,¹ Hanaa Dakour Aridi, MD,¹ Mouen A. Khashab, MD¹

	EGDE (n=30)	e-ERCP (n=30)
ERCP Success	100%	60%
Procedure time, min	49.8	90.7
Adverse Events	6.7%	10%
Mean weight change, kg	-1.1	+0.07
Length of stay, days	1	10.5

Mukhari et al. GIE 2018

EDGE at DDW

Multicenter international registry: US & Spain
 8 institutions, 2017-2022

Clinical Characteristics	Group A – Stent Fixation	Group B – No Stent Fixation	
Number of Patients	N = 54 (48%)	N = 59 (52%)	
Mean Age	60 Years	61 Years	
Gender	40 Females (74%)	39 Females (66%)	
Inpatient	42/54 (78%)	30/59 (51%)	
Avg Time Since RYGB	11 Years	12.3 Years	
Technical Success	53/54 (98%)	59/59 (100%)	
Clinical Success	54/54 (100%)	56/59 (95%)	

EDGE at DDW

Clinical Characteristics	Group A – Stent Fixation	Group B – No Stent Fixation
Average Follow Up	115 Days	144 Days
Fistula Suture Closure at LAMS Removal	31/54 (57%)	38/59 (64%)
APC Use During Fistula Closure	18/54 (33%)	16/59 (27%)
Avg Time From EDGE Procedure to Fistula Closure	103 Days	133 Days
Persistence of Fistula	3/54 (6%)	7/59 (12%)

Same session ERCP achieves a high technical and clinical success

Stent fixation may decrease likelihood of stent migration

Adverse Events	Group A – Stent Fixation	Group B – No Stent Fixation	
Stent Migration	2/54 (4%)	7/59 (12%)	
Bleeding	4/54 (7%)	2/59 (3%)	
Abdominal Pain	5/54 (9%)	9/59 (15%)	
Pancreatitis	0/54 (0%)	0/59 (0%)	
Cholangitis	2/54 (4%)	0/59 (0%)	

EDGE at DDW

- Same-session EDGE achieves a high technical and clinical success while maintaining an acceptable safety profile
- Stent fixation with suturing during same-session EDGE decreases the likelihood of stent migration and related adverse events
- Additional prospective studies are needed to advance EDGE towards a more standardized procedure

	Pros	Cons	Summary
Lap assisted	Widely available; requires little/no "extra" advanced endo skills	Difficulty with timing/coordination; High adverse events	Not first line May consider if pt also needs chole
Enteroscopy- assisted	Relatively low AEs; single session	Time consuming; access to DBE, low success rate	Can be used as first line when adv techniques not available
Antegrade EUS / EAC	Single session; allows for easy rendezvous if antegrade not successful	Requires advanced EUS skills; modest AE rates; stenting is problematic	Only for experienced hands in select indications
EDGE (LAMS- assisted)	Quicker, allows for use of duodenoscope; can allow for single session*	Requires advanced EUS skills; modest AE rates; may require 2 nd ERCP	Becoming first line, especially if urgent ERCP not needed

Conclusion

- Involve your local interventional endoscopist in a multidisciplinary discussion of management of patients with
 - Gastric outlet obstruction, malignant or benign
 - +/- biliary obstruction
 - Cholecystitis
 - Biliary/pancreatic disease in patients with Roux en Y gastric bypass
- As well as: gastric varices (EUS-glue/coil), obesity (ESG, TORe, duodenal resurfacing), achalasia (POEM), gastroparesis (G-POEM), GI tract neoplasia (EMR, ESD, FTR), Subepithelial tumors (STER, FTR, loop-ligation), pain due to pancreatic cancer (EUS-CPN), Barrett's (EMR/ESD, RFA, cryo), and many others...

